The Lupo
Design and function

Self-Study Programme No. 201
In spite of its compact dimensions, the Lupo boasts a specification which stands comparison with any saloon and is rounded off by a distinctive design.

Environmental pollution kept to a minimum by using fuel-efficient, low-emission and quiet engines as well as recycleable and recycled plastic parts.

The Lupo conforms to all internationally recognised safety standards for head-on collision, side impact, offset collision and rear collision as well as for rollover.

The small and highly manoeuvrable vehicle is simply likeable, chic and natural.
At a glance

The Lupo ... 4
Vehicle dimensions, aerodynamics
The car and the environment
Environmental protection, recycling

Body ... 10
Safety bodyshell,
paintwork structure and corrosion protection, high-strength body panels
Soundproofing, Isofix, fabric sliding roof
Front and rear bumpers
Restraint system, airbags

Engines ... 18
Engine-gearbox combination
Engines, roller cam follower,

Power transmission ... 26
Manual gearbox 085 and gear selection
Manual gearbox 002 and gear selection
Automatic gearbox and gate selection

Fuel system ... 29

Running gear ... 30
Steering
Front axle/rear axle
Brake system
Front and rear brakes
ESBS

Electrical system .. 38
Vehicle electrical system/components
Fitting locations of control units,
Dash panel insert, central locking
Radio generation '99

Heating, air conditioning system 48
Heating, air conditioning system,
Radiator fan control unit,
high pressure sender, system overview, functional diagram

Service ... 55
Special tools
The Lupo

The small LUPO achieves great things in terms of safety, quality, performance, running gear and equipment.

• Safety

The safety bodyshell, belt tensioners, front airbags and side airbags mean that the little Lupo is no baby when it comes to safety.

• The running gear

The suspension strut front axle with wishbones, as well as the torsion beam rear axle are a winning team and place the LUPO firmly on the road.
• **Equipment level**

A 4-seater or 5-seater version can be specified. Easy Entry seats are standard for the driver and front passenger. They exceed the standard specification. Also available for the LUPO is a complete range of extras ranging from the electric fabric sliding roof and the air conditioning system to the navigation system.

• **Quality**

The Lupo also meets Volkswagen’s recognised quality standard:
• Narrow body joints
• High-quality materials

• **Engines and gearboxes**

A choice of four petrol engines and one diesel engine in combination with a 5-speed manual gearbox and a 4-speed automatic gearbox will be available when the LUPO is launched on the market.
The Lupo

Vehicle dimensions

With a maximum length of 3527 mm, the LUPO belongs to the subcompact class.

The Lupo offers space for 4 or 5 persons, depending on the equipment level.

The luggage compartment has a capacity of 139 or 792 litres. The rear seat backrest can be folded down. The inclination of the rear seat backrest can be adjusted in two stages in order to enlarge the luggage compartment.
Aerodynamics

A streamlined bumper with integral front spoiler, optimised door mirror, small gap and joint dimensions as well as flush-fitting windows and headlights minimise aerodynamic drag and wind noise.

One of the main goals in the development of the LUPO’s aerodynamics was to streamline the bodyshell in such a way as to eliminate additional measures to improve the vehicle’s aerodynamics, measures which involve higher costs and weight.

Aerodynamic drag
\[D = 0.62 \, \text{m}^2 \]

\[c_d = 0.32 \]

\[A = 1.94 \, \text{m}^2 \]
The car and the environment

In addition to households, industry, power stations, heating stations and industrial agriculture, the car is one of the principal sources of air pollution.

CO₂ emissions constitute approx. 50 percent of the greenhouse gases which are responsible for the "man-made" phenomenon of global warming. Industry, power stations, households and small consumers are responsible a good two thirds of CO₂ emissions. Road traffic worldwide accounts for approx. 12 percent of CO₂ emissions, whereas cars contribute less than 6 percent.

For Volkswagen, reducing fuel consumption, and along with it CO₂ emissions, is one of its main goals in the development of new automobiles. We have agreed to reduce the fuel consumption of our new vehicles by 25 percent between 1990 and 2005. During the period from 1990 to 1995, we achieved a 10 percent reduction. We plan to achieve another 15 percent reduction within the next ten years. The so-called "3-litre car" (a car which consumes 3 litres of fuel per 100 km) is a major step towards low-CO₂-emission vehicles, both for production and during operation.

Source: Technical University of Vienna

Source: VOLKSWAGEN AG
Recycling

Volkswagen, in association with disposal firms, runs a Workshop Disposal Programme. This process is co-ordinated through the distribution centre or the importer in charge in accordance with prevailing national legislation.

These components can be disposed of without posing a burden on the environment:

- Starter batteries
- Laminated glass windscreens
- Airbags and belt tensioner (not fired)
- Brake fluid
- Coolant
- Shock absorbers
- Plastic bumpers
- Radiator grilles
- Plastic fuel tanks
- Wheel housing liners
- Wheel covers
- Lock carriers/subframes
- Old tyres

Workshop Disposal Programme:

- Disposal of a wide range of automotive components and media free of charge
- Advice in matters concerning the environment and waste disposal
- Inexpensive disposal offers for other items
Body

Development of the safety bodyshell

The blueprint for development of the LUPO’s body was the Polo ‘95. A key development goal was to design a body whose occupant cell offers a high level of dimensional stability in crash situations.

During a head-on collision,

the impact energy is absorbed via 2 crash planes:

In the 1st crash plane, the side reinforcement in the doors located directly behind the bumper cover, transmits the impact energy to the side members. The energy is then distributed evenly to the centre tunnel and reinforced side members.

In the 2nd crash plane, the wheelhouse side members transfer the impact energy via the door reinforcements to the rear end.

In the event of a rear collision,

the side reinforcement in the doors behind the bumper cover transmits the force to the side members. The body side panel which is almost fully enclosed on the inside helps to absorb more energy.
In the event of a side impact,
the re-inforced A- and B-pillars, the strong side members and the almost fully integrated inner panel of the door minimise deformation of the occupant cell.

The side impact re-inforcement in the door, the door-glass channel re-inforcement and the intermediate padding produce an optimal barrier against the force of impact.

The closed door is securely anchored to the side member by means of a bracket on the underside. During a side impact, it prevent the door from intruding into the occupant cell.
The body of the LUPO has features which surpass the norm for this class:

- Long-term corrosion protection
- Fully-galvanised body
- Crash performance in accordance with VW's safety standard
- Modular design
- Narrow joints

Paintwork structure and corrosion protection

Environmentally friendly, water-dilutable paints are:

- The cathodic cataphoresis, filler, top coat (met. base coat, solid base coat)
- All outer panel are electroplated.
- All inner panels are hot-dip galvanised.

High-strength body panels

are also used in the LUPO. They are not as thick as conventional body panels and, as a result, weigh less but are stronger. High-strength body panels have the task of absorbing and distributing energy during a crash in a more controlled manner. They absorb vibrations at the rear axle mount.

You can find detailed information regarding high-strength sheet-metal panels in Self-Study Programme No. 200.
Bitumen-based heat-shrinkable and adhesive foils of various thickness as well as felt parts and carpeting are used for soundproofing purposes. The adhesive foils absorb the vibrations which occur in various areas of the body. Felt parts absorb noise by interrupting the sound wave.

The Isofix child safety seat fastening

is fitted in the LUPO as standard.

There are 4 retaining eyelets below the rear seats, which make it possible to install two child safety seats with the Isofix fastening system. The retaining eyelets are welded to the floorpan assembly and hold the child safety seat securely during a crash.

The electric fabric sliding roof

In addition to the electrically-operated glass sliding/tilting roof, an electrically-operated fabric sliding roof is also available for the LUPO. The roof spoiler allows the vehicle to be driven without any draught and quietly with the sunroof open, even at high speed.

The electric fabric sliding roof is identical to the sunroof used in Polo model '95.
Body

The front and rear bumpers

The front and rear bumpers comprise a side reinforcement in the doors and a bumper cover.

The front and rear bumper covers are capable of absorbing impact energy at speeds of up to 4 kph without damage. Higher impact speeds of up to approx. 15 kph are absorbed by the side reinforcement in the doors without deformation of the side members. The side members only become deformed as a result of a severe impact.
The restraint system and the airbags

Seat belts
Front:
They have ball-type tensioners which are fired both mechanically and pyrotechnically.

For more detailed information on the belt tensioners, please refer to Self-Study Programme No. 192.

3-point seat belt concepts for the rear seats

Standard equipment

The 5-seater version is also equipped with a lap belt for the middle seat.
All gas generators contain acid-free propellant.

The front airbags

have a volume of 57 litres for male/female drivers and a volume of 95 litres for the front passenger.

At production launch, a 120-litre front passenger’s airbag will be used. It will be identical to the airbag used in the Golf ’98. The 120-ltr. front passenger’s airbag cannot be replaced by the 95-ltr. airbag, therefore it can only be replaced in accordance with the original equipment level.

The side airbags

have a volume of 12 litres.

The function of the restraint system during severe accidents

The restraint system prevents contact occurring between the shoulder and head area with the steering wheel or dash panel insert.

Once the firing threshold is attained, the airbag control unit transmits the “Open central locking (CLS)” signal to the CLS control unit.
The airbag system

As of a defined degree of accident severity and the associated delay period, the appropriate airbags are triggered depending on the impact side and the angle of impact.

Head-on collision

The driver’s and front passenger’s airbags are triggered.

Side/head-on collision

The driver’s, front passenger’s and side airbags are triggered.

Side impact

Only the side airbag which is actually required to protect the vehicle’s occupants is triggered. This considerably reduces repair costs after an accident.
Engines

The engine-gearbox combination

<table>
<thead>
<tr>
<th>Engines</th>
<th>Gearbox</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0-ltr. 37 kW petrol engine with camshaft in block</td>
<td>5-speed manual gearbox 085</td>
</tr>
<tr>
<td>1.4-ltr. 16V 55 kW petrol engine</td>
<td>5-speed manual gearbox 002</td>
</tr>
<tr>
<td>1.4-ltr. 16V 74 kW petrol engine</td>
<td>4-speed automatic gearbox 001</td>
</tr>
<tr>
<td>1.7-ltr. 44 kW SDI engine</td>
<td></td>
</tr>
<tr>
<td>1.0-ltr. 37 kW rocker lever petrol engine</td>
<td></td>
</tr>
</tbody>
</table>
The 1.0-ltr. 37 kW petrol engine

is an advanced version of the proven 1.0-ltr. aluminium engine with the camshaft in block

Features of the engine mechanicals are:
- Aluminium cylinder crankcase with press-fitted cast iron cylinder liners
- Cylinder head with single overhead camshaft
- Bucket tappets with hydraulic adjusters

Features of the engine management system are:
- Motronic MP 9.0 (refer to Self-Study Programme No. 168)
- Sequential injection
- Rotating ignition voltage distribution
- Selective knock control
- Conforms to exhaust emission standards EU III and D3

Specifications

Engine code “ALL”
4-cylinder inline engine
Valves per cylinder : 2
Displacement : 999 cm³
Bore : 70.6 mm
Stroke : 67.1 mm
Compression ratio : 10.5 : 1
Max. output : 37 kW at 5000 rpm
Max. torque : 86 Nm at 3000 to 3600 rpm
Engine management : Bosch Motronic MP 9.0
Fuel type : unleaded 95 RON

Knock control allows the engine to be operated alternatively with unleaded 91 RON fuel but with a slight reduction in power output and torque.
The new engine generation:

Overview

The 1.4-ltr. engines described on the following pages belong to a new generation of petrol engines.

All have:
- a new cylinder head with valve activation via roller cam follower
- Aluminium cylinder block
- An engine speed sensor which is integrated in the flange for the crankshaft sealing ring at the flywheel end
- static high-voltage distribution

All conform to exhaust emission standards EU III and D3.

Cylinder head

The camshafts are mounted in the camshaft housing. The camshaft housing also acts as the valve cover.

The valves and hydraulic support elements are fitted in the cylinder head. The roller cam follower engages in the support element and abut the end of the valve stem.
Valve activation by roller cam follower

Conventional cam follower

The cam glides over the slip face of the cam follower. As a result, high friction losses occur and the cam follower is subjected to mechanical stress. Valve clearance is adjusted manually via the adjustable counter-bearing.

The roller cam follower

The cam of the roller cam follower rolls off a roller running in needle bearings. The cam stroke is transmitted to the valve stem with minimal friction loss.

The roller cam follower (depressed)

The hydraulic support element replaces the manually adjustable counter-bearing. It acts as the pivot for the roller cam follower and assumes the task of automatic valve clearance adjustment. Lubrication and filling are performed via an oil channel in the cylinder head.

For more detailed information, please refer to Self-Study Programme No. 196.
Drive units

The 1.4-ltr. 16V 55 kW petrol engine

Features of the engine mechanicals:

- Aluminium cylinder crankcase
- Press-fitted cast iron cylinder liners
- Cylinder head with roller cam followers
- Secondary belt drive
- Primary catalytic converter integrated in the exhaust manifold
- Conforms to exhaust emission standards EU III and D3

Specifications

Engine code “AKQ“
4-cylinder inline engine

Valves per cylinder : 4
Displacement : 1390 cm³
Bore : 76.5 mm
Stroke : 75.6 mm
Compression ratio : 10.5 : 1
Max. output : 55 kW at 5000 rpm
Max. torque : 128 Nm at 3300 rpm

Engine management : Magneti Marelli 4AV
Fuel type : unleaded 95 RON

Knock control allows the engine to be operated alternatively with unleaded 91 RON fuel but with a slight reduction in power output and torque.

For more detailed information, please refer to Self-Study Programme No. 196.
The 1.4-ltr. 16V 74 kW petrol engine

The basic engine is the 1.4-ltr.-16V 55 kW petrol engine.

The key differences compared to the 1.4-ltr. 16 V 55 kW petrol engine

- Stronger pistons
- Cylinder head with larger intake and exhaust ducts
- Modified camshaft timing
- Modified intake module
- Modified exhaust system
- Aluminium oil sump for increased rigidity of higher-performance engine
- conforms to exhaust emission standards EU III and D3

Specifications

Engine code “ANM”
4-cylinder in-line engine

Valves per cylinder : 4
Displacement : 1390 cm³
Bore : 76.5 mm
Stroke : 75.6 mm
Compression ratio : 10.5 : 1
Max. output : 74 kW at 6000 rpm
Max. torque : 128 Nm at 4500 rpm
Engine management : Magneti Marelli 4 AV
Fuel type : unleaded 98 RON

The knock control also allows the engine to be operated alternatively with unleaded 91 RON fuel with a slight reduction in power output and torque.

For more detailed information, please refer to Self-Study Programme No. 196.
Drive units

the 1.7-ltr. 44 kW SDI diesel engine

Features of the engine mechanics:
- Diesel direct injection engine
- Naturally aspirated engine
- Displacement was reduced to 1.7-ltr. from 1.9-ltr. by modifying the crankshaft stroke.
- The external crankcase breather has been deleted.
- Two-stage EGR valve for better metering of the exhaust gas recirculation
- Conforms to exhaust emission standards EU III

Specifications
Engine code “AKU”
4-cylinder inline engine
Valves per cylinder : 2
Displacement : 1.7-ltr.
Bore : 79.5 mm
Stroke : 86.4 mm
Compression ratio : 19.5 : 1
Max. output : 44 kW at 4200 rpm
Max. torque : 115 Nm at 2200-3000 rpm
Mixture preparation : Bosch distributor injection pump and electronic control unit EDC 15
Fuel type : min. 45 CN
The 1.0-ltr. 37 kW petrol engine
is an improved version of the 1.3-ltr. engine fitted
in the Skoda Felicia.

Features of the engine mechanicals are:
- The valve is driven via a camshaft in block
 (ohv), tappets, push rods and rocker levers
- The cylinder crankcase is made of die cast
 aluminium
- “wet-type” cast iron cylinder liners
- The crankshaft runs in 3 bearings

Features of the engine management system
are:
- Multipoint injection
- Static high-voltage distribution
- Conforms to exhaust emission standards EU III
 and D3

Specifications
Engine code “AHT”
4-cylinder in-line engine

Valves per cylinder : 2
Displacement : 997 cm³
Bore : 72 mm
Stroke : 61.2 mm
Compression ratio : 10 : 1

Max. output : 37 kW
at 5000 rpm
Max. torque : 84 Nm
at 3250 rpm
Engine management : Siemens Simos 2P

Fuel type : unleaded 95 RON

Knock control allows the engine to be operated
alternatively with unleaded 91 RON fuel with a
slight reduction in power output and torque.

For more detailed information, please refer to Self-Study Programme No. 203.
The 5-speed manual gearbox 085

is fitted in petrol engines with overhead camshaft and in the diesel engine.

The total transmission ratio matched to the installed engine version is spread by means of different gear ratios and final drive ratios. The gearbox is assigned to the engine via the gearbox code.

The gear selection system

Gear engagement is via a gate selector lever and gear selector cable.

Thanks to the selector cables, the swinging motion of the engine only has a minimal effect on the gear lever. As a result, gears can be selected with greater precision.
The 5-speed manual gearbox 002

is exclusive with the 1.0-ltr. rocker lever petrol engine “AHT”, an improved version of the 1.3-ltr. engine in the Skoda Felicia.

(for certain markets only)

Technical features:

- 5-speed manual gearbox
- Reverse gear is unsynchronised
- Two-part aluminium gearbox case
- The end cover and the engine suspension have been modified.
- Common oil filling for gearbox and final drive
- Final drive via drive shaft flanges

The gear lever is mounted on two bearing bolts in a guide in floating configuration. A cable pull transmits the relative movement of the engine to the guide. This reduces oscillation at the gear lever. The gears can therefore be engaged with greater precision.

A gear change

is performed by a selector rod.
The 4-speed automatic gearbox 001

is available for 1.4-ltr. 16V 55 kW petrol engine “AKQ”.

Technical features:

- Ravigneaux planetary gear
- Torque converter with integrated lock-up clutch
- Solenoid valves at the valve body for electro-hydraulic control
- Common oil supply for planetary gear and final drive

Gear selection

The individual drive positions, the parking lock and neutral are selected mechanically with the gate selector lever.

The control unit records the incoming sensor signals during vehicle operation, evaluates these signals and activates the individual solenoid valves. The integrated dynamic shift program automatically selects the "Eco" shift characteristic or "Sport" shift characteristic.

For more detailed information, please refer to in Self-Study Programme No. 176 “4-speed Automatic Gearbox 001".
The fuel tank

of the LUPO is located in the crash-protected area in front of the rear axle. It has a volume of 35 litres.

Petrol engines

The activated charcoal canister is located at the front right-hand side of the vehicle. The activated charcoal absorbs fuel components from fuel vapours. Quick-release couplings are used for installing the fuel pipes.

The fuel gauge sender is attached to the fuel pump housing.

Diesel engines

Diesel-engined vehicles do not require a fuel pump or activated charcoal canister. The fuel gauge sender, in combination with the intake manifold, for the intake, form a single unit. The fuel pump is an integral part of the distributor injection pump.
Running gear

The running gear of the LUPO is identical to the Polo'95.

The running gear has been adapted to the LUPO, making allowance for driving safety and driving comfort.

The following pages will present you with the following items:

- The steering
- The front axle
- The rear axle
- The brakes
- The traction control systems
The steering

comprises a safety steering column which is height-adjustable and a mechanical steering gear.

The safety steering column

The safety steering column can be compressed by up to 150 mm during a crash. This reduces the injury risk for the driver.

Power steering

Depending on performance and wheel size, the LUPO is equipped with power steering.

The two track rods for power steering and mechanical steering are adjustable.
The front axle of the LUPO comprises suspension struts and wishbones. The suspension struts are bolted to the wheel bearing housing and the wishbones are bolted to the subframe by rubber mountings.

For more detailed information regarding this axle in respect of castor, shock absorption characteristics and the track-stabilising kingpin offset, please refer to Self-Study Programme No. 166.

The Lupo with power steering has an anti-roll bar on the front axle.
The rear axle

is a torsion beam axle.

Toe and camber design are defined by design and are non-adjustable. For vehicle alignment, the ascertained values can only be compared with the nominal values in the Workshop Manual.

The bonded rubber bushes of the rear axle have been fitted rotated through 45°. This reduces noise transmission from the road to the body.
Running gear

The brake system

The standard equipment comprises:

- ventilated front disc brakes
- self-adjusting rear drum brakes

For added active safety, the anti-lock braking system ITT Mark 20 IE is available with electronic brake pressure distributor.
The front brakes

Ventilated disc brakes

- **up to 55 kW**
 - dia. 239 mm x 18 mm

- **as of 74 kW**
 - dia. 256 mm x 20 mm

The rear brakes

- **Drum brakes to 55 kW**
 - dia. 180 x 30 mm without ABS
 - dia. 200 x 40 mm with ABS

- **Disc brakes for 74 kW and above**
 - dia. 232 x 9 mm
 - Alu. sliding caliper
Running gear

The Electronic Stability Brake System

improves track stability and steerability when the vehicle is being braked by activating the brakes selectively.

ESBS is an improved software in the ITT Mark 20 IE control unit.

It utilises the sensors and actuators from the anti-lock braking system system.

Understeer

If a vehicle is braked heavily in a corner, the wheel location forces acting on the front wheels are reduced. As the vehicle has forwards momentum, its pushes towards the outer edge of the corner over the front axle. This driving situation is termed “understeer”.

In vehicles with ESBS, the ABS control unit recognises this driving situation and responds by altering the speeds of the individual wheels as appropriate. The anti-lock braking system reduces the brake pressure applied to the front axle. This increases the wheel location forces and the vehicle retains its directional stability.
Oversteer

If the vehicle is steered into a corner too sharply at high speed and if the brakes are applied heavily, the rear will break away towards the outer edge of the corner. This driving situation is referred to as "oversteer".

The ABS control unit recognises this situation and responds by reducing the speed of the rear wheels and reducing the brake pressure applied to the wheels on the inside of the corner. This increases the wheel traction forces acting on the wheels on the inside of the corner and the vehicle rear end retains its directional stability.

Malfunctioning of the ESBS can neither be diagnosed nor repaired, because a vehicle's driving dynamics cannot be reproduced with workshop facilities.
Decentralised vehicle electrical system
The layout of the electrical system is decentralised, i.e. the basic component parts of the electrical system are located at different fitting locations.

The main components are:

- Main fuse box at the battery
- Relay carrier, coupling station, potential distributor and fuse holder behind the dash panel insert
- Coupling station at A-pillar, left and right
- Vehicle-specific wiring harness
- Diagnosis plug
The components of the decentralised vehicle electrical system

Main fuse box

Here, the electrical system is protected by fuses directly behind the battery.

- The alternator, cabin power supply, glow plug system and the air conditioning system are protected by metal fuses.
- The ABS system and the radiator fan are protected by micro-fuses (Little Fuse).

In the current flow diagram, the fuses positioned here have the code designation “SA”.

Relay carrier

Used for mounting the relays for standard equipment and optional extras. The relay carrier is fixed by two retaining lugs.

Coupling station below relay carrier

The connections to the vehicle electrical system are made in the coupling station by means of colour-coded and mechanically coded connectors (e.g. engine compartment, dash panel insert). The potential distributor is located on the left next to the coupling station (threaded terminal, terminal 30).
Electrical system

The components of the decentralised vehicle electrical system

Fuse-holder

Two different fuses are used to protect the electrical circuit.

- Mini-fuse rated for max. 15A
- Micro-fuse (Little Fuse) rated for over 15 A

This combination offers the following advantages:

- More fuses within the same construction space
- More electrical circuits protected by individual fuses

In the current flow diagram, the fuses positioned here have the code designation “SB”.

Coupling station at A-pillar

The connections to the doors, e.g. loudspeakers, central locking and power windows, are located in this coupling station.

Diagnosis plug

Fitting location: in dash panel insert, behind oddments tray.
The fitting locations of the control units

- Engine control unit
- Automatic gearbox control unit
- Airbag control unit on gearbox tunnel
- ABS control unit
- Control unit for radiator fan
- Control unit for central locking/above relay carrier
- Control unit for immobiliser/above fuse-holder
The dash panel insert

The distinctive design of the dash panel insert comprises two instrument clusters.

<table>
<thead>
<tr>
<th>The rev counter comprising:</th>
<th>The speedometer comprising:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Fuel indicator</td>
<td>- Odometer and trip recorder</td>
</tr>
<tr>
<td>- Coolant temperature display</td>
<td>- Service Interval Display</td>
</tr>
<tr>
<td>- Digital clock</td>
<td>- Indicator</td>
</tr>
<tr>
<td>- and warning lamps</td>
<td>- and warning lamps</td>
</tr>
</tbody>
</table>

Technical features:

- LEDs are used exclusively for illumination and as warning lamps.

- Blue instrument lighting with luminous red pointers.

- The analogue displays (rev counter, speedometer, fuel gauge and coolant temperature) are activated by stepping motors with software-controlled damping.

- Connected to vehicle electrical system by means of a 32-pin connector.

- The same version of the dash panel insert is used for all model variants.

- The Lupo has the same self-diagnosis (address word 17) as in the Polo ’98.
The immobiliser

The immobiliser has a separate control unit which is equivalent to the 2nd generation in design and function and comprises an additional variable code. The control unit is behind the dash panel insert via the fuse holder. The self-diagnosis function (address word 25) is identical to the POLO ‘98.

Functional description:

After turning on the ignition, the transponder transmits a fixed code via the reader coil to the immobiliser control unit. If this code matches the code stored in the immobiliser control unit, a random number generator generates a variable code. This variable code is transmitted to the transponder in the car key fob. A secret arithmetic operation is now started in the transponder and in the immobiliser control unit.

The transponder transmits its result to the immobiliser control unit which recognises the correct car key by comparing this result with its own result. A variable code is then cross-checked between the immobiliser control unit and engine control unit. Once a match has been established, the vehicle is ready for operation.
The central locking system

The central locking system, in combination with manual window lifters, is available as an optional extra. The motors for central locking are activated directly by the central control unit.

In vehicles that are also equipped with power windows, a control unit is integrated in the window lifter motor for operation and force limitation. With this version also, the motors for the central locking and window lifters are activated directly by the central control unit.

The central locking comprises the following functions:

- Electric motor operated central locking system with SAFE function for locking the doors and tailgate.
- Doors are locked and unlocked with interior lock - unlock button
- Interior light and boot light control.
- The airbag control unit unlocks the doors if it recognises that the vehicle has been involved in a crash.
- Convenience opening of the power windows as well as convenience locking of the window lifters and sliding/tilting roof is possible via the door lock cylinder.
- Self-diagnostic capability (address word 35).
- Anti-theft warning system with radio-wave remote control as an option
Radio generation ‘99

The BETA and GAMMA radio systems have been fundamentally revised from a technical viewpoint and their design has been updated. The alpha radio system is available with unchanged technology and design.

The figures show the user interface of the BETA and GAMMA radio systems with removable control panel.

The main new features of the BETA and GAMMA radio systems are:

- Display lighting in blue, button and buttons backlit in red.
- Optionally available with permanent or removable control panel.
- New menu adjustments, e.g. balance or bass, and on-screen menu assistance are possible.
- The convenience anti-theft device saves recoding the radio system, e.g. after cutting off the power supply for servicing.
- Self-diagnostic capability
The BETA radio system

The new functional features are:

- 30-station memory
- The loudspeaker balance on the left and right can be adjusted with the BAL (Balance) button.
- Speed-dependent volume adaption / GALA
- Prepared for connecting CD changer
- Playback of calling or called party through all loudspeakers while conducting a telephone call.

To commission the radio, the four-digit code number of the electronic anti-theft device must be entered.

If the radio recognises the dash panel insert, the radio is again ready for operation without having to reenter the four-digit code number a delay of several seconds.

However, if the radio is fitted in another vehicle, the four-digit code number must be re-entered.

The convenience anti-theft device

When the NO contact is closed, a communication link is established between the radio and the dash panel insert via the self-diagnosis wire (K wire).

If the supply is cut off, e.g. to carry out work on the electrical system, the radio checks whether the dash panel insert is the same as before voltage cut-off after inserting the ignition key and turning on the ignition.
The **GAMMA radio system**

offers the following new features in addition to the functional features of the **BETA**:

- If the vehicle has a Highline dash panel insert, the frequency and the station name are displayed.

- With the TIM function, up to 9 traffic announcements of a selected TP station can be recorded automatically. Max. total duration is 4 minutes. When the radio is on, every traffic information message is recorded as soon as TP appears in the display. When the radio is off, record mode can be activated by briefly pressing the TIM button. The memory automatically stores traffic information messages for a 24-hour period. Once this period of time has elapsed or when the radio is switched on, the standby function ends.

- Due to programme content, e.g. classical music or rock music, the various stations have a different basic volume. The radio adjusts the basic volume by automatically adapting the volume, provided that the stations have been programmed in the station keys.

For more detailed information regarding the subject of Radio Reception/Basics, please refer to Self-Study Programme No. 147 “Radio Systems ’94”.

The CD player

The new CD player can be combined with the **BETA** and **GAMMA** radio systems. The fitting location is above or below the radio, depending on the vehicle model.

The CD player can play back one music CD at a time. The CD player is operated by means of the radio buttons.

The CD player can also be combined with a 6-disc CD changer which has been optimised in size.
Heating, air conditioning

For heater and air conditioner operation in the LUPO, two equipment variants are available:

- a heater or

- a manually operated heater and air conditioner

Heater

As in other models, too, fresh air/air recirculation mode is possible for added comfort.

Air recirculation mode can be switched on and off with the air recirculation button.

Air recirculation mode is switched off automatically when the rotary switch for air distribution is set to "Defrost". The depressed air recirculation button is released mechanically. This keeps any moist cabin air, e.g. due to wet clothing, away from windscreen.

Manual air conditioner

In the case of the manual air conditioning system, the driver or front passenger controls the interior climate. Air conditioning mode can be switched on or off by pressing the AC button (Air Conditioning).

The fresh air/air recirculation flap is operated by electric motor. All other flaps are activated via Bowden cables.

An electronic high pressure sender records the overall refrigerant pressure curve.
High pressure sender G65

is integrated in the high-pressure pipe of the refrigerant circuit.

It records the refrigerant pressure and transduces the physical quantity of "pressure" into an electrical signal.

It is an electronic pressure sensor which replaces the air conditioner pressure switch F 129 used previously.

Unlike the pressure switch for the air conditioning system, not only the defined pressure thresholds but also the overall pressure characteristic of the refrigerant are recorded.

Signal utilisation:
By evaluating the signal, the engine control unit and the radiator fan control unit recognise the load which the air conditioner compressor exerts on the engine.

Signal failure:
If the radiator fan control unit does not detect a pressure signal, the air conditioner compressor is switched off.

Plus-points:
- In idling mode, engine speed can be adapted exactly to the power consumption of the air conditioner compressor.

- The cut-in and cut-out cycles of the radiator fan settings are staggered by a short delay time. This ensures that the speed variations of the cooling fan are barely perceptible in idling mode and enhances comfort particularly in vehicles with less powerful engines.

Self-diagnosis “fault message“:
The high pressure sender is stored in the fault memory of the engine electronics.
Heating, air conditioning

Function of the high pressure sender

The refrigerant pressure is sent to a silicon crystal. A characteristic of this silicon crystal is that its electrical resistance changes as soon as it is “bent”. This is dependent on pressure level and curve.

The silicon crystal, together with a microprocessor, is integrated in the sensor and supplied with voltage. Changes in the resistance of the silicon crystal and the resulting voltage changes in the crystal are processed by the microprocessor and converted into a pulse-width modulated output signal (PWM).

At low pressurea

If the crystal is only “bent” minimally, the resistance change is equally as small as the voltage change.

Pulse-width modulated signal (PWM)

The pulse-width modulated signals are generated at a frequency of 50 Hz. This results in a period duration of 20 ms, which is equivalent to 100%.

The pulse width at a low pressure of 1.4 bar is 2.6 ms. This is equivalent to 13% of the period duration.
At high (rising) pressure

is the crystal thickness “bent”. The resistance increases in direct proportion to the voltage change.

Pulse-width modulated signal (PWM)

The pulse width increases in direct proportion to increasing pressure. The pulse width at a high pressure of 37 bar is 18 ms. This is equivalent to 90% the period duration.
Radiator control unit J293

has been improved technically, and its function has been adapted to the new high pressure sender G65.
It will be fitted with the high pressure sender, and its distinguishing design features are its modified plug connections.

The functions are:

- Activating/de-activating the next higher radiator fan setting and the solenoid coupling of the air conditioner compressor

- Monitoring the overall pressure characteristic of the refrigerant by evaluating the pulse-width modulated signal (PWM) from the high pressure sender

- Bi-directional signal exchange with the engine and gearbox control unit

Test function:

The control unit currently does not have self-diagnostic capability. For details of test possibilities, please refer to the current Workshop Manual on the "Heating/air conditioning system".
System overview

Switch for A/C system
E 35

Ambient temperature switch
F 38

Gearbox control unit
J ...

Radiator fan control unit
J 293

Solenoid coupling
N 25

Radiator fan
V 7

Engine ctrl unit
J ...

High press. sender
G 65

Ambient temperature switch
F 38

Solenoid coupling
N 25

Thermoswitch for radiator fan
F 18

SSP 201_116
Heating, air conditioning system

Functional diagram

Components

A/+ Battery positive terminal
E 9 Switch for fresh air blower
E 35 Switch for air conditioning system
F 18 Thermoswitch for radiator fan
F 38 Ambient temperature switch
G 65 High pressure sender
J 293 Radiator fan control unit
N 24 Series resistor for fresh air blower with safety thermal cut-out
N 25 Solenoid coupling
SB 27 Fuse in fuse holder/relay board
SA 4 Fuse in fuse holder/battery
SA 8 Fuse in fuse holder/battery
SA 7 Fuse in fuse holder/battery
SB 48 Fuse in fuse holder/relay board
V 2 Fresh air blower
V 7 Cooling fan
Here you can see the new special tools and workshop equipment

Lashing strap set (2 pcs.)
T 100 38

Before removing the rear axle, the Lupo must be lashed to the support arms of the lifting platform. For this purpose, the plugs must first be removed from the side members. The lashing straps on the left and right must then be fed through the holes in the side members and lashed securely.

If the vehicle is not lashed securely, there is the danger that the vehicle will slide off the lifting platform because the front end of the vehicle bears most of the weight.